

1) Prime number : a whole number that has 2 factors only, which are 1 and itself.

Eg: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31...

Note:
0 and 1 are
neither prime
nor composite

2) Composite number : a whole number that has more than 2 factors.

Eg: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20...

3) Prime factorisation means writing a composite number as a product of its prime factors.

Eg: Find the prime factorisation of 24.

Eg: Express 24 as a product of its prime factors in index notation. } same question,
} asked differently.

Start with the smallest prime number	2	24
	2	12
	2	6
	3	3
		1

24 ÷ 2

Stop when we reach 1

This means
"therefore" $\therefore 24 = 2^3 \times 3$

4) Perfect square :

- A whole number whose square root is a whole number.
 - A whole number that can be written as a whole number \times the same whole number.
 - A whole number in which the powers of its prime factors are all multiples of 2 / even.
- Eg: 1, 4, 9, 16, a^2 , b^4 , $2^4 \times 7^6$

5) Perfect cube :

- A whole number whose cube root is a whole number.
- A whole number in which the powers of its prime factors are all multiples of 3.

Eg: 1, 8, 27, 4^3 , x^9 , $5^{15} \times 11^6$

6) Highest Common Factor (HCF) and Lowest Common Multiple (LCM)

Eg: Find the HCF and LCM of 36, 54, 90

Method 1

	2	36, 54, 90	← Divide each number by 2
Common prime factors	3	18, 27, 45	
	3	6, 9, 15	
		2, 3, 5	← Stop when there is no common prime factor to divide

$$\therefore \text{HCF} = 2 \times 3^2 \quad \text{and} \quad \text{LCM} = 2 \times 3^2 \times 2 \times 3 \times 5$$

$$= 18 \quad \quad \quad = 2^2 \times 3^3 \times 5$$

$$= 540$$

Method 2

$$\begin{aligned} 36 &= 2^2 \times 3^2 \\ 54 &= 2 \times 3^3 \\ 90 &= 2 \times 3^2 \times 5 \end{aligned} \quad \left. \begin{array}{l} \\ \\ \end{array} \right\} \text{Step ①: Express each number in its prime factors}$$

$$\begin{aligned} \therefore \text{HCF} &= 2 \times 3^2 \\ &= 18 \end{aligned} \quad \left. \begin{array}{l} \\ \\ \end{array} \right\} \text{Step ②: } \checkmark \text{ Choose } \underline{\text{common}} \text{ prime factors (2,3)} \\ \text{(HCF)} \quad \checkmark \text{ Choose the } \underline{\text{lowest}} \text{ power for each prime factor}$$

$$\begin{aligned} \text{LCM} &= 2^2 \times 3^3 \times 5 \\ &= 540 \end{aligned} \quad \left. \begin{array}{l} \\ \\ \end{array} \right\} \text{Step ②: } \checkmark \text{ Choose } \underline{\text{all}} \text{ prime factors (2,3,5)} \\ \text{(LCM)} \quad \checkmark \text{ Choose the } \underline{\text{highest}} \text{ power for each prime factor.}$$